If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80+48x-4x^2=0
a = -4; b = 48; c = +80;
Δ = b2-4ac
Δ = 482-4·(-4)·80
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{14}}{2*-4}=\frac{-48-16\sqrt{14}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{14}}{2*-4}=\frac{-48+16\sqrt{14}}{-8} $
| 3x-5+x-1=4 | | Y=2/9x+11 | | 5(p-4)=63 | | x3-8x+7=0 | | 360-2x=120 | | 5+x-4x+9=4 | | 3x-3/4=81 | | 48/d=28 | | 7-y+9=25 | | -17+c=3 | | p+8=-19 | | P=1340m+2000 | | m+50+75=180 | | x+40+65=180 | | 7-15y=-21 | | 450=x+(0.06x/60) | | x-37/7=12 | | (4+y)(3y-1)=0 | | s+67=s+20 | | 92x-644=2484 | | 9x=54=162 | | 9x+54=162 | | 6m+3=7m+ | | 15y^2+8y+1=0 | | 3a+(-4a)-12=15+a | | 8n-9=6n+9 | | (2z+7)-5(9z)=-60 | | 23-x+x+8-x+2x=50 | | 23-x+x+18-3+2x=50 | | (9/8)^3x-12=1 | | (9/8)^3x-10=(1/81)^1/6 | | 9^3x+12=1 |